Keratoconus: Clinical Decision Making and Patient Education

Cory M. Collier OD, FAAO
Disclosures

• None
Objectives

• Review the clinical characteristics of Keratoconus
• Review current contact lens options
• Understand surgical options in Keratoconus
• Review Acute Corneal Hydrops
What is Keratoconus?

- Primary, progressive, clinically non-inflammatory* corneal thinning\(^1\)
 - *Recent studies show increase in inflammatory mediators in tear film and corneal cells\(^2\)
- Bilateral, Asymmetric
- Prevalence 1 in 2000\(^3\)
- Two-hit hypothesis\(^2\)
 - Genetic predisposition
 - Environmental influence
RefRACTive Signs

• Refractive:
 • Varying levels of myopia, astigmatism
 • Scissoring reflex on retinoscopy
 • Can present with multiple glasses remakes in early disease
Corneal Signs

- Apical thinning
- Fleischer ring: subepithelial iron deposition
- Vogt’s Striae: posterior, vertical; stress lines
- Apical Scarring
- Corneal Protrusion: Munson’s Sign
Imaging Signs

• Anterior Topography: Placedo Disc
 • Central/Paracentral steepening
Imaging Signs

- Tomography/Pentacam
 - Abnormal anterior/posterior elevation
Imaging Signs

- Tomography/Pentacam
 - Global pachymetry values
 - Rapid thickness change from center of ectasia to “normal” peripheral corneal thickness
 - Central thickness can be “normal”
Contact Lens Options in Keratoconus
Vision options: Early disease

• Spectacles
 • Minimal to no reduction in BCVA
 • Adverse to CLs
 • ~16% ⁴

• Commercial soft contact lenses
 • Early disease, adequate spectacle BCVA
Contact lens options: Specialty Soft

• Designs specific for Keratoconus
 • Increased center thickness to mask irregularity
 • Aggressive stabilization techniques

• Recent improvements in oxygen permeability may lead to increase in utilization of this modality

• Most successful in early/mild disease5

• Poorer visual acuity and less control of higher order aberrations vs GP6
Contact Lens Options: Hybrid

- Center: Gas permeable
- Periphery/Skirt: Soft
- New lens designs utilize silicone hydrogel skirt to improve oxygen permeability
- Moderately improved lens tolerance compared to corneal GP
Contact Lens Options: Gas Permeable

• Corneal Gas Permeable
 • Historical standard of care
 • Lens designs to match location/size of ectasia

• Scleral Lenses
 • Large diameter gas permeable lens
 • Avoids interaction with cornea
 • Bears weight on conjunctiva/sclera
 • Currently employed in moderate-advanced disease
 • Current area of extensive interest/research/publication
Surgical Options in the Management of Keratoconus
Surgical Options

- Collagen Cross-linking
- Intrastromal Corneal Ring Segments
- Combined PRK and Collagen Cross-linking
- Keratoplasty
Collagen Cross-linking (CXL)

• Ultraviolet activated riboflavin strengthens cornea

○ Primary goal:
 • Decrease/stop progression

○ Secondary goal:
 • Improve BCVA, uncorrected VA, and reduce spherical equivalent Rx
Collagen Cross-linking (CXL)

• Two treatment strategies
 • Epi-Off: original approach
 • Epi-On/ Transepithelial: Developed to address safety concerns
 • Community still undecided
 • Epi-Off: More effective?
 • Epi-Off: 93% stable
 • Epi-On: 40% stable
 • Epi-On: Safer?
 • Epi-Off: 0-3% microbial keratitis, ~10 % stromal haze, 2.5% sterile infiltrates
 • Epi-On: none of the above
Collagen Cross-linking (CXL)

- Supporting literature⁹:
 - 36 month randomized, controlled trial
 - Corneal Curvature: Kmax
 - Control: Steepened by 1.75 D
 - Study: Flattened by 1.03 D
 - BCVA and UCVA improved in study group
 - 2 non-vision affecting complications
Collagen Cross-linking (CXL)

- Patient Selection:
 - Progressive Disease
 - Likely risk of progression
 - Younger age
 - Steep K at diagnosis
 - Poor BCVA at diagnosis
Intrastromal Corneal Ring Segments (ICRS)

• INTACS®
 • Material: PMMA
 • Implanted in peripheral stroma

- Primary Goals:
 • Improve uncorrected and best-corrected VA
 • Improve CL tolerance
- Does not halt progression10
Intrastromal Corneal Ring Segments (ICRS)

• Patient Selection11:
 • Inadequate vision in spectacles and CLs
 • CL intolerance
 • Clear central cornea
 • Adequate mid-peripheral corneal thickness (~450 microns)

• Moderate-Severe most likely to benefit
Combined ICRS and CXL

• Combines refractive management and corneal stabilization12
• Comparable refractive outcome to ICRS alone
• Ideal sequence of treatment undecided
Combined Photorefractive Keratectomy and CXL

- Combines subtractive technique (PRK) for vision correction with stabilizing technique (CXL)
- Same-day PRK followed by CXL has less complications and is more effective than sequential procedure13
- Primary Goals:
 - Stop progression
 - Reduce spherical equivalent to improve BCVA and UCVA
Combined PRK and CXL

- Treatment strategies
 - Topography guided PRK: better regularization of topography\(^\text{14}\)
 - Non-topography guided: less tissue removed\(^\text{15}\)

- Both improve UCVA, decrease SE and decrease progression
Combined PRK and CXL

• Patient Selection
 • Progressive disease
 • Inadequate vision in spectacles and contact lenses
 • Contact lens intolerance
 • Clear cornea
 • Mild-Moderate disease
Keratoplasty16

- Penetrating Keratoplasty
 - Historical standard of care
 - Full-thickness corneal transplant
 - Indicated when endothelium is compromised (Hx of Hydrops) or scarring is posterior

- Deep Anterior Lamellar Keratoplasty
 - Anterior, partial thickness corneal transplant
 - Indicated with anterior scarring and in presence of uncompromised Descemet’s membrane/endothelium
PKP vs. DALK17

TABLE 1. Incidence of Postoperative Complications in Keratoconus Patients Who Had Undergone DALK or PKP

<table>
<thead>
<tr>
<th></th>
<th>DALK (n = 294)</th>
<th>PKP (n = 79)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double chamber</td>
<td>22.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rejection</td>
<td>1.3</td>
<td>11.8</td>
<td>0.0002</td>
</tr>
<tr>
<td>Infection</td>
<td>2.5</td>
<td>4.1</td>
<td>0.45</td>
</tr>
<tr>
<td>Secondary glaucoma</td>
<td>5.1</td>
<td>18.7</td>
<td>0.0002</td>
</tr>
<tr>
<td>Wound dehiscence</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Endothelial decompensation</td>
<td>0</td>
<td>1.4</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Keratoplasty

- **Patient Selection**
 - Central corneal opacification
 - Contact lens intolerance
 - Inadequate BCVA
 - Advanced disease with high risk of perforation/hydrops (~200 central thickness)
Acute Corneal Hydrops
Clinical Presentation

- Sudden onset18
 - Corneal edema
 - Vision loss
 - Epiphora
 - Pain
 - Photophobia
Epidemiology

• Affects 3% of keratoconus patients19

• Risk Factors20,21
 • Early age at Dx
 • Poor BCVA at Dx
 • Hx of eye rubbing
 • Males>Females
 • Family Hx protective

• Typically unilateral at presentation22
 • 40% chance of fellow eye within 10 years
Pathophysiology

• Localized break in Descemet’s Membrane22

• Inciting incident23
 • Eye Rubbing
 • Valsalva
 • Idiopathic
Treatment Approaches

• Observation
 • Self-limiting with resolution in 5-36 weeks24

• Topical25
 • Hypertonic solution
 • Antibiotic
 • Corticosteroid
 • Cycloplegic
Treatment Approaches

• Surgical
 • Intracameral gas injection26,27,28
 • Air, Sulfur Hexafluoride, Perfluoropropane
 • Pre-Descemet’s Sutures29
• Improved recovery time: as little as 7 days
• Final visual recovery: equivalent
Outcome25

- Varying corneal opacification
- Flattening of involved area
 - CL re-fitting
- 20% elect PKP within 6 months
- BCVA trends downs

![Box plot showing visual acuity comparison before and after hydrops. Median: 20/80 before hydrops, Median: 20/400 after hydrops.](image)
Treatment Paradigm

- Every Keratoconus Patient
 - Discourage Eye-Rubbing, prescribe topical MCS/AH PRN
 - Identify risk for progression
 - If progression documented or likely: Recommend CXL
 - If stable: monitor with serial topography
- Attempt non-invasive visual improvement
 - Spectacles → CLs
- Discuss surgical options
Citations